Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The broken-exponential radial structure and larger size of the Milky Way galaxy

Abstract

The radial structure of a galaxy is a fundamental property that reflects its growth and assembly history. Although it is straightforward to measure that of external galaxies, it is challenging for the Milky Way because of our inside perspective. Traditionally, the radial structure of the Milky Way has been assumed to be characterized by a single-exponential disk and a central bulge component. Here we report (1) a measurement of the age-resolved Galactic surface brightness profile in a wide radial range from R = 0 to 17 kpc and (2) the corresponding size of the Milky Way in terms of a half-light radius. We find a broken surface brightness profile with a nearly flat distribution between 3.5 and 7.5 kpc, in contrast to a canonical single-exponential disk. This broken profile results in a half-light radius of 5.75 ± 0.38 kpc, significantly larger than that inferred from a single-exponential disk profile but consistent with that of local disk galaxies of similar mass. We also confirm that the size growth history of the Milky Way is broadly consistent with high-redshift galaxies but with systematically smaller size. Our results suggest that the Milky Way has a more complex radial structure and larger size than previously expected.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Luminosity surface density profiles of the integrated and mono-age stellar populations of the Milky Way.
Fig. 2: The half-light radius of the Milky Way in comparison with that of local disk galaxies.
Fig. 3: The evolution of the Milky Way’s half-light radius with age.

Similar content being viewed by others

Data availability

All data presented in this work are available from a public repository https://github.com/lianjianhui/Source-data-for-MW-size-paper.git.

References

  1. van der Kruit, P. C. & Freeman, K. C. Galaxy disks. Annu. Rev. Astron. Astrophys. 49, 301–371 (2011).

    Article  ADS  Google Scholar 

  2. Bland-Hawthorn, J. & Gerhard, O. The Galaxy in context: structural, kinematic, and integrated properties. Annu. Rev. Astron. Astrophys. 54, 529–596 (2016).

    Article  ADS  Google Scholar 

  3. Bovy, J. et al. The spatial structure of mono-abundance sub-populations of the Milky Way disk. Astrophys. J. 753, 148 (2012).

    Article  ADS  Google Scholar 

  4. Shen, J. & Zheng, X.-W. The bar and spiral arms in the Milky Way: structure and kinematics. Res. Astron. Astrophys. 20, 159 (2020).

    Article  ADS  Google Scholar 

  5. Pohlen, M. & Trujillo, I. The structure of galactic disks. Studying late-type spiral galaxies using SDSS. Astron. Astrophys. 454, 759–772 (2006).

    Article  ADS  Google Scholar 

  6. Zasowski, G. et al. Target selection for the Apache Point Observatory Galactic Evolution Experiment (APOGEE). Astron. J. 146, 81 (2013).

    Article  ADS  Google Scholar 

  7. Majewski, S. R. et al. The Apache Point Observatory Galactic Evolution Experiment (APOGEE). Astron. J. 154, 94 (2017).

    Article  ADS  Google Scholar 

  8. Zasowski, G. et al. Target selection for the SDSS-IV APOGEE-2 Survey. Astron. J. 154, 198 (2017).

    Article  ADS  Google Scholar 

  9. Beaton, R. L. et al. Final targeting strategy for the Sloan Digital Sky Survey IV Apache Point Observatory Galactic Evolution Experiment 2 north survey. Astron. J. 162, 302 (2021).

    Article  ADS  Google Scholar 

  10. Santana, F. A. et al. Final targeting strategy for the SDSS-IV APOGEE-2S survey. Astron. J. 162, 303 (2021).

    Article  ADS  Google Scholar 

  11. Jurić, M. et al. The Milky Way tomography with SDSS. I. Stellar number density distribution. Astrophys. J. 673, 864–914 (2008).

    Article  ADS  Google Scholar 

  12. Licquia, T. C. & Newman, J. A. Improved estimates of the Milky Way’s stellar mass and star formation rate from hierarchical Bayesian meta-analysis. Astrophys. J. 806, 96 (2015).

    Article  ADS  Google Scholar 

  13. Boardman, N. et al. Milky Way analogues in MaNGA: multiparameter homogeneity and comparison to the Milky Way. Mon. Not. R. Astron. Soc. 491, 3672–3701 (2020).

    Article  ADS  Google Scholar 

  14. Bovy, J. et al. The stellar population structure of the Galactic disk. Astrophys. J. 823, 30 (2016).

    Article  ADS  Google Scholar 

  15. Mackereth, J. T. et al. The age–metallicity structure of the Milky Way disc using APOGEE. Mon. Not. R. Astron. Soc. 471, 3057–3078 (2017).

    Article  ADS  Google Scholar 

  16. Gaia Collaboration. et al. The Gaia mission. Astron. Astrophys. 595, A1 (2016).

    Article  Google Scholar 

  17. Gaia Collaboration. et al. Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 649, A1 (2021).

    Article  Google Scholar 

  18. Rojas-Arriagada, A. et al. The bimodal [Mg/Fe] versus [Fe/H] bulge sequence as revealed by APOGEE DR14. Astron. Astrophys. 626, A16 (2019).

    Article  Google Scholar 

  19. Lian, J. et al. The Milky Way tomography with APOGEE: intrinsic density distribution and structure of mono-abundance populations. Mon. Not. R. Astron. Soc. 513, 4130–4151 (2022).

    Article  ADS  Google Scholar 

  20. Cantat-Gaudin, T. et al. Uniting Gaia and APOGEE to unveil the cosmic chemistry of the Milky Way disc. Astron. Astrophys. 683, A128 (2024).

    Article  Google Scholar 

  21. Xiang, M. et al. Stellar mass distribution and star formation history of the Galactic disk revealed by mono-age stellar populations from LAMOST. Astrophys. J. Suppl. Ser. 237, 33 (2018).

    Article  ADS  Google Scholar 

  22. Erwin, P., Pohlen, M. & Beckman, J. E. The outer disks of early-type galaxies. I. Surface-brightness profiles of barred galaxies. Astron. J. 135, 20–54 (2008).

    Article  ADS  Google Scholar 

  23. Zoccali, M. et al. Age and metallicity distribution of the Galactic bulge from extensive optical and near-IR stellar photometry. Astron. Astrophys. 399, 931–956 (2003).

    Article  ADS  Google Scholar 

  24. Nataf, D. M. The controversial star-formation history and helium enrichment of the Milky Way bulge. Publ. Astron. Soc. Aust. 33, e023 (2016).

    Article  ADS  Google Scholar 

  25. Hasselquist, S. et al. Exploring the stellar age distribution of the Milky Way bulge using APOGEE. Astrophys. J. 901, 109 (2020).

    Article  ADS  Google Scholar 

  26. Lian, J. et al. The Milky Way’s bulge star formation history as constrained from its bimodal chemical abundance distribution. Mon. Not. R. Astron. Soc. 497, 3557–3570 (2020).

    Article  ADS  Google Scholar 

  27. Bovy, J. et al. Life in the fast lane: a direct view of the dynamics, formation, and evolution of the Milky Way’s bar. Mon. Not. R. Astron. Soc. 490, 4740–4747 (2019).

    Article  ADS  Google Scholar 

  28. Frankel, N., Sanders, J., Rix, H.-W., Ting, Y.-S. & Ness, M. The inside-out growth of the Galactic disk. Astrophys. J. 884, 99 (2019).

    Article  ADS  Google Scholar 

  29. Minniti, D., Saito, R. K., Alonso-García, J., Lucas, P. W. & Hempel, M. The edge of the Milky Way stellar disk revealed using clump giant stars as distance indicators. Astrophys. J. Lett. 733, L43 (2011).

    Article  ADS  Google Scholar 

  30. Sellwood, J. A. & Binney, J. J. Radial mixing in galactic discs. Mon. Not. R. Astron. Soc. 336, 785–796 (2002).

    Article  ADS  Google Scholar 

  31. Martínez-Serrano, F. J., Serna, A., Doménech-Moral, M. & Domínguez-Tenreiro, R. Disk galaxies with broken luminosity profiles from cosmological simulations. Astrophys. J. Lett. 705, L133–L137 (2009).

    Article  ADS  Google Scholar 

  32. Ruiz-Lara, T. et al. Observational hints of radial migration in disc galaxies from CALIFA. Astron. Astrophys. 604, A4 (2017).

    Article  Google Scholar 

  33. Lian, J. et al. Quantifying radial migration in the Milky Way: inefficient over short time-scales but essential to the very outer disc beyond 15 kpc. Mon. Not. R. Astron. Soc. 511, 5639–5655 (2022).

    Article  ADS  Google Scholar 

  34. Shen, S. et al. The size distribution of galaxies in the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 343, 978–994 (2003).

    Article  ADS  Google Scholar 

  35. Blanton, M. R., Kazin, E., Muna, D., Weaver, B. A. & Price-Whelan, A. Improved background subtraction for the Sloan Digital Sky Survey images. Astron. J. 142, 31 (2011).

    Article  ADS  Google Scholar 

  36. York, D. G. et al. The Sloan Digital Sky Survey: technical summary. Astron. J. 120, 1579–1587 (2000).

    Article  ADS  Google Scholar 

  37. Simard, L., Mendel, J. T., Patton, D. R., Ellison, S. L. & McConnachie, A. W. A catalog of bulge+disk decompositions and updated photometry for 1.12 million galaxies in the Sloan Digital Sky Survey. Astrophys. J. Suppl. Ser. 196, 11 (2011).

    Article  ADS  Google Scholar 

  38. Willett, K. W. et al. Galaxy Zoo 2: detailed morphological classifications for 304 122 galaxies from the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 435, 2835–2860 (2013).

    Article  ADS  Google Scholar 

  39. Hart, R. E. et al. Galaxy Zoo: comparing the demographics of spiral arm number and a new method for correcting redshift bias. Mon. Not. R. Astron. Soc. 461, 3663–3682 (2016).

    Article  ADS  Google Scholar 

  40. Lian, J., Bergemann, M., Pillepich, A., Zasowski, G. & Lane, R. R. The integrated metallicity profile of the Milky Way. Nat. Astron. 7, 951–958 (2023).

  41. van der Wel, A. et al. 3D-HST+CANDELS: the evolution of the galaxy size–mass distribution since z = 3. Astrophys. J. 788, 28 (2014).

    Article  ADS  Google Scholar 

  42. Schönrich, R. & Binney, J. Chemical evolution with radial mixing. Mon. Not. R. Astron. Soc. 396, 203–222 (2009).

    Article  ADS  Google Scholar 

  43. Blanton, M. R. et al. Sloan Digital Sky Survey IV: Mapping the Milky Way, nearby galaxies, and the distant Universe. Astron. J. 154, 28 (2017).

    Article  ADS  Google Scholar 

  44. Wilson, J. C. et al. The Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectrographs. Publ. Astron. Soc. Pac. 131, 055001 (2019).

    Article  ADS  Google Scholar 

  45. Bowen, I. S. & Vaughan, A. H. The optical design of the 40-in. telescope and of the Irénée DuPont telescope at Las Campanas Observatory, Chile. Appl. Opt. 12, 1430–1434 (1973).

    Article  ADS  Google Scholar 

  46. Gunn, J. E. et al. The 2.5 m telescope of the Sloan Digital Sky Survey. Astron. J. 131, 2332–2359 (2006).

    Article  ADS  Google Scholar 

  47. Nidever, D. L. et al. The data reduction pipeline for the Apache Point Observatory Galactic Evolution Experiment. Astron. J. 150, 173 (2015).

    Article  ADS  Google Scholar 

  48. García Pérez, A. E. et al. ASPCAP: the APOGEE stellar parameter and chemical abundances pipeline. Astron. J. 151, 144 (2016).

    Article  ADS  Google Scholar 

  49. Smith, V. V. et al. The APOGEE Data Release 16 spectral line list. Astron. J. 161, 254 (2021).

    Article  ADS  Google Scholar 

  50. Pinsonneault, M. H. et al. The second APOKASC catalog: the empirical approach. Astrophys. J. Suppl. Ser. 239, 32 (2018).

    Article  ADS  Google Scholar 

  51. Mackereth, J. T. et al. Dynamical heating across the Milky Way disc using APOGEE and Gaia. Mon. Not. R. Astron. Soc. 489, 176–195 (2019).

    Article  ADS  Google Scholar 

  52. Leung, H. W. & Bovy, J. Deep learning of multi-element abundances from high-resolution spectroscopic data. Mon. Not. R. Astron. Soc. 483, 3255–3277 (2019).

    ADS  Google Scholar 

  53. Bressan, A. et al. PARSEC: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code. Mon. Not. R. Astron. Soc. 427, 127–145 (2012).

    Article  ADS  Google Scholar 

  54. Chen, Y. et al. Improving PARSEC models for very low mass stars. Mon. Not. R. Astron. Soc. 444, 2525–2543 (2014).

    Article  ADS  Google Scholar 

  55. Chen, Y. et al. PARSEC evolutionary tracks of massive stars up to 350 M at metallicities 0.0001 ≤ Z ≤ 0.04. Mon. Not. R. Astron. Soc. 452, 1068–1080 (2015).

    Article  ADS  Google Scholar 

  56. Marigo, P. et al. A new generation of PARSEC-COLIBRI stellar isochrones including the TP-AGB phase. Astrophys. J. 835, 77 (2017).

    Article  ADS  Google Scholar 

  57. Bovy, J., Rix, H.-W., Green, G. M., Schlafly, E. F. & Finkbeiner, D. P. On galactic density modeling in the presence of dust extinction. Astrophys. J. 818, 130 (2016).

    Article  ADS  Google Scholar 

  58. Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).

    Article  ADS  Google Scholar 

  59. Maraston, C. Evolutionary population synthesis: models, analysis of the ingredients and application to high-z galaxies. Mon. Not. R. Astron. Soc. 362, 799–825 (2005).

    Article  ADS  Google Scholar 

  60. Choi, J. et al. Mesa Isochrones and Stellar Tracks (MIST). I. Solar-scaled models. Astrophys. J. 823, 102 (2016).

    Article  ADS  Google Scholar 

  61. Dotter, A. MESA Isochrones and Stellar Tracks (MIST) 0: Methods for the construction of stellar isochrones. Astrophys. J. Suppl. Ser. 222, 8 (2016).

    Article  ADS  Google Scholar 

  62. Chen, B. Q. et al. Three-dimensional interstellar extinction map toward the Galactic bulge. Astron. Astrophys. 550, A42 (2013).

    Article  Google Scholar 

  63. Launhardt, R., Zylka, R. & Mezger, P. G. The nuclear bulge of the Galaxy. III. Large-scale physical characteristics of stars and interstellar matter. Astron. Astrophys. 384, 112–139 (2002).

    Article  ADS  Google Scholar 

  64. Sormani, M. C. et al. Jeans modelling of the Milky Way’s nuclear stellar disc. Mon. Not. R. Astron. Soc. 499, 7–24 (2020).

    Article  ADS  Google Scholar 

  65. Lian, J., Yan, R., Zhang, K. & Kong, X. The quenching timescale and quenching rate of galaxies. Astrophys. J. 832, 29 (2016).

    Article  ADS  Google Scholar 

  66. Kauffmann, G. et al. The host galaxies of active galactic nuclei. Mon. Not. R. Astron. Soc. 346, 1055–1077 (2003).

    Article  ADS  Google Scholar 

  67. Brinchmann, J. et al. The physical properties of star-forming galaxies in the low-redshift Universe. Mon. Not. R. Astron. Soc. 351, 1151–1179 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J.L. acknowledges support from Yunnan Province Science and Technology Department (Grant Nos. 202005AB160002, 202105AE160021 and 202305AT350002) and the Start-up Fund of Yunnan University (Grant No. CY22623101). B.C. is supported by the National Natural Science Foundation of China (Grant Nos.12173034 and 12322304). N.F.B. acknowledges support from the Science and Technologies Facilities Council (Grant No. ST/V000861/1). Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the US Department of Energy Office of Science and the participating institutions. SDSS-IV acknowledges support and resources from the Center for High-Performance Computing at the University of Utah. The SDSS web site is www.sdss.org. SDSS-IV is managed by the Astrophysical Research Consortium for the participating institutions of the SDSS Collaboration including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, the Chilean Participation Group, the French Participation Group, Harvard-Smithsonian Center for Astrophysics, Instituto de Astrofísica de Canarias, Johns Hopkins University, the Kavli Institute for the Physics and Mathematics at the University of Tokyo, the Korean Participation Group, Lawrence Berkeley National Laboratory, the Leibniz Institute for Astrophysics Potsdam, the Max Planck Institute for Astronomy at Heidelberg, the Max Planck Institute for Astrophysics at Garching, the Max Planck Institute for Extraterrestrial Physics, the National Astronomical Observatories of China, New Mexico State University, New York University, University of Notre Dame, National Observatory of the Ministry of Science, Technology and Innovation, Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, the United Kingdom Participation Group, the National Autonomous University of Mexico, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University and Yale University.

Author information

Authors and Affiliations

Authors

Contributions

J.L. developed the initial idea. J.L. and G.Z. prepared the APOGEE data and calculated the APOGEE survey selection function. J.L. conducted the data analysis. B.C. provided the alternative dust extinction map towards the inner Galaxy. T.W. prepared the Gaia data for confirmation of the inner flattened profile. J.L., G.Z., B.C., J.I., N.B. and X.L. wrote the manuscript.

Corresponding author

Correspondence to Jianhui Lian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, J., Zasowski, G., Chen, B. et al. The broken-exponential radial structure and larger size of the Milky Way galaxy. Nat Astron (2024). https://doi.org/10.1038/s41550-024-02315-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-024-02315-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing